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Scattering amplitudes: Nice surprises in NV = 4 SYM

Can

we hope to determine all amplitudes, i.e. for arbitrary number of legs and loops?

symmetries
= amplitudes in N/ = 4 possess a hidden dual conformal symmetry

[Drummond, J. H., Korchemsky, Sokatchev]
tree-level: all N/ = 4 amplitudes are known [Drummond, J. H.]
loop-level: all-loop BDS ansatz for MHV amplitudes

[Anastasiou, Bern, Dixon, Kosower; Bern, Dixon, Smirnov]
= correct for 4 and 5 particles if dual conformal symmetry holds

[Drummond, J. H., Korchemsky, Soktachev]
(known to be modified for 6 particles)

new duality between MHV amplitudes and Wilson loops

[Alday, Maldacena; Drummond, J. H., Korchemsky, Soktachev; Brandhuber, Heslop, Travaglini]

AdS/CFT: computations of amplitudes at A — oo

[Alday, Maldacena; Alday, Gaiotto, Maldacena; Alday, Maldacena, Sever, Vieira]

reViVal Of tWiStor dUahtleS'? [Arkani-Hamed et al.; Mason, Skinner; Spradlin et al, ...]
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Scattering amplitudes in A/ = 4 super Yang-Mills

@ Symmetries

@ Scattering on the Coulomb branch of N’ =4 SYM

- Extended dual conformal symmetry
- Exponentiation

- Regge limit
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Tree-level symmetries

What are the symmetries? How are they realized?
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Tree-level symmetries

What are the symmetries? How are they realized?
© superconformal symmetry (follows from action) [Witten]
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Tree-level symmetries

What are the symmetries? How are they realized?
© superconformal symmetry (follows from action) [Witten]
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© dual superconformal symmetry N [Drummond, J. H., Korchemsky, Sokatchev]
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What is the closure of the two symmetry algebras?
13/14]



Summary of Yangian structure

@ Combination of standard and dual superconformal symmetry gives Yangian

Y[psu(z’ 2‘4)] [Drummond, J. H., Plefka]

[Picture: Beisert]

@ Tree level superamplitudes invariant: | 7 o Al*¢ =0

for 7 € Y[psu(2,2|4)].

@ string theory interpretation: fermionic T-duality [Berkovits, Maldanca; Beisert, Ricei, Tseytlin, Wolf]
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Summary of current understanding

+ @ @ 0 0 0 0O 0 O --- AdS/CFT
8| ¢ o
e, 5. BDS ansatz / dual conformal Ward identity
o
e o - o
restrictions from dual conformal Ward identity
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2 e e @ O O
1- o o 0o 0 © 0 0 o unitarity
0+- o o @ © @6 06 0 © BCFW recursion
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4 5 6 7 8 9 external legs

@ Diagram has three important ingredients:
analytic properties, symmetries (+IR structure), AdS/CFT
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An alternative regularization [Alday, Henn, Plefka, Schuster]

@ string picture:

Alday, Maldacena

[*] bOSOﬂIC + fermionic T—duallty |S relevant [Alday, Maldacena; Berkovits, Maldacena]
@ isometries of AdSs in T-dual theory

Jo14=rd, +x"9, =D
Jip—J1,=0,=P,
Jay +Jo1 = 2x,(x,0" + r0,) — (x* + r*)9, = K,
@ should correspond to Higgs mechanism in the field theory

@ Expectation: Amplitudes regulated by Higgs masses should be invariant exactly

under extended dual conformal symmetry lA(M and D!
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Higgsing N' = 4 Super Yang-Mills

[Alday, Henn, Plefka, Schuster]
e UN+ M) — U(N) x U(1)M
o ‘light’ (m; — m;) fields — zero mass for mj = m
o ‘heavy’ m; fields — mass m for mj = m

i1 iz

i i3
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Higgsing N' = 4 Super Yang-Mills

[Alday, Henn, Plefka, Schuster]
e UN+ M) — U(N) x U(1)M

o ‘light’ (m; — m;) fields — zero mass for mj = m

o ‘heavy’ m; fields — mass m for mj = m

i1

i i3

ig i4

@ scatter fields with M, M indices,
only allow loops in N-part of U(N + M)
N>M
— renders amplitudes IR finite
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One loop test of extended dual conformal symmetry

@ Consider the purely scalar amplitude:

Az = (Pa(pr) Ps(p2) Pa(ps) Ps(pa)) = iggns (1 + MW (s, 8, mp) + 0(32))

I(l)(s t, m;): Massive box integral in dual variables (p; = x;i — xj, 1)

P3

_ /d4x (xfs + (M — m3)?)(x34 + (m2 — my)?)

(Xla + ml)(X2a + mz)(X3a + m3)(X4a + m4)

P4

@ Reexpressed in 5d variables &M: | %/ == x!', &*:=m;,| i=1...4

5(>?M:4)

1 o2 54

I )(5, t,m;) = X13X24/d Xago 02 03 03
Xla 2aX3aX4a

Indeed /(D (s, t, m;) is extended dual conformal invariant: K,/((s, t, m;) =0
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Exponentiation in Higgs regularization
@ reminder: dimensional regularization [Bern, Dixon, Smirnov]
r© g(f) 12 Le 12 Le
| M _ ¢| l'cusp  Yg [l [l
g M Za [ 2(be)?  2fe (s) +<t>

+%rcusp(a) [Iog2 s %H] +¢(a) + 0(e)

interference of 1/e and O(e): 1/e x O(e) = O(1)
= in order to compute log M, need O(¢) terms in M
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Exponentiation in Higgs regularization
@ reminder: dimensional regularization [Bern, Dixon, Smirnov]
r© g(f) 12 Le 12 Le
| M _ ¢| l'cusp  Yg [l [l
g M Za [ 2(be)?  2fe <s> +<t>

+%rcusp(a) [Iog2 s %H] +¢(a) + 0(e)

interference of 1/e and O(e): 1/e x O(e) = O(1)
= in order to compute log M, need O(¢) terms in M

[*] ana|0g Of BDS in nggs regu|arizati0n: [Alday, J. H., Plefka, Schuster; J. H., Naculich, Schnitzer, Spradlin]

1 . s t
08 Ma = —7Teusp(2) [log? =5 + log? | — Go(a) [log = +log —]

— s

—|—Zrcusp(a) [Iog s ] + &(a) + O(m?)
we have m? x log m?> — 0 = can drop all O(m?) terms
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Extended dual conformal invariance at higher loops

@ At 2 loops: Only one integral is allowed by extended dual conformal symmetry:

2 ig

Similarly restricts possible integrals at higher loops.

[cf. also Drummond, Henn, Smirnov, Sokatchev '06]
@ Computed this integral in m; — 0 limit using Mellin-Barnes techniques.

@ No 2 x e — 1 ‘interference’ as in dimreg, here In(m?) x m* — 0
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Two- and three-loop exponentiation

[*] ana|0g Of BDS in nggs regu|arizati0n: [Alday, J. H., Plefka, Schuster; J. H., Naculich, Schnitzer, Spradlin]

1 . s t
08 Ma = —7Teusp(2) [log? =5 + log? ] — Go(a) [log — +log —]

— s

5 eusp(2) [log? 2 + 72| +&(a) + O(m?)

@ verified by computing dual conformal integrals up to O(m?)
- at two loops [Alday, J. H., Plefka, Schuster]

- at three IOOpS [; J. H., Naculich, Schnitzer, Spradlin]
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Regge limits for amplitudes on the Coulomb branch

o take Regge I|m|t t = (p2 + p3)2 — O [J. H., Naculich, Schnitzer, Spradlin]
expect

stsm) (5) 4 oGy

trajectory a(s/m?) — 1 = —1v(a)log(s/m?) — Go(a)

ﬂ 000 OO
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Regge limits for amplitudes on the Coulomb branch

o take Regge I|m|t t = (p2 + p3)2 — O [J. H., Naculich, Schnitzer, Spradlin]
expect

stsm) (5) 4 oGy

trajectory a(s/m?) — 1 = —1v(a)log(s/m?) — Go(a)
@ determine leading Regge behavior [Eden et al, The analytic S-matrix]

] 0o
[EET

@ horizontal ladders give leading log (LL) contribution at L loops

ot (o () () sl) 000
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Speculations about all loops and legs

@ It seems reasonable to speculate that [J. H., Naculich, Schnitzer, Spradin]
(S|m||ar ConjeCture for Oﬂ:—she” regulator: [Drummond, Korchemsky, Sokatchev])

M, =1+ a"®c(T)T,

where: coupling a, loop order L(Z)
coefficients ¢(Z) = compute by (generalized) unitarity
integrals Z = restricted set of extended dual conformal integrals

@ additional constraints from expected IR structure

M, = exp [ [eusp(@) Z Iog2 i — —Go(a Z Iog — + O(Iog m )

@ insights from analytic structure for generic m?, and Regge limit(s)?

o further constraints from the (broken) conventional conformal symmetry?
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@ Higgs regulator for planar N' =4 SYM

Higgs regulator makes dual conformal symmetry exact

<

restricts integral basis

©

@ exponentiated amplitude easier to compute

@ Regge limit: leading log computed to all orders!

@ can we understand the all-loop structure for six points?

@ can we learn more from string theory for perturbative gauge theory
computations?
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