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A 2-category for the 2D o-model




The gerbe for the monophase world-sheet
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The string background for the multiphase world-sheet

Example:



The string background for the multiphase world-sheet — ctd.
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Dualities via world-sheet defects



The canonical interpretation of defects — lines



The canonical interpretation of defects — lines
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The canonical interpretation of defects — lines

Categorial quantisation & more geometric analyses suggest
(some) DEFECTS ~ STRING DUALITIES

This can be rendered rigorous in the 2-categorial setting. ..

B canonically defines PREQUANTUM BUNDLE

Ly — Py, curv(Ly) = Q5
DUALITY = QZ -lagrangean submanifold
D, C Py x P, priHs = proity,
together with a bundle isomorphism
priLolo, = pr3lolo,
B canonically defines a duality iff
o : LQ—- LM : X 1,0 X are surjective submersions

(I, X) topological
extra conditions (technical)



The canonical interpretation of defects — junctions
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The canonical interpretation of defects — junctions
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Thm.:



The canonical interpretation of defects — junctions

Defect junctions naturally associated with interactions ¢ ™)

|
1

)/
Vi
i
/7
7

Further hints from categorial quantisation & study of maximally
symmetric WZW defects.

(B,J) can. define a Q ~-isotropic INTERACTION SUBSPACE
J,(®B:J:B)C P, xP, xP,
together with a bundle isomorphism

(pri Lo ® pralo) s, (e8.7:8) — Pralols, (e8.7:8)

2-iso’s for maxym G-WZW defects ~
spaces of conformal blocks on punctured and decorated CP' via

CSk(G) on R x CPE,,k}kEﬁ with parallel Wilson lines of fixed holonomy



Symmetries as distinguished dualities



Symmetries as distinguished dualities

Converse result for a class of dualities with local data

q)U' : pr>1‘<£0'|©o' — prZ£U|©(r )

1109 ©7.((X1,p1). (X P = [ Vol(S")pey, F(X0) + WA(Xs. )]

$, can. defines a flat bi-brane with
world-volume Q = (idy x F)(M) Cc M x M, with F € Isom(M, g);
a e {1,2};

bi-brane 1-isomorphism ¢ : ¢ = F*g

bi-brane maps ¢, = pr

(e %]

These are INTERNAL SYMMETRIES of the closed string.



Generalised geometry with a 2-categorial twist



Brackets on the state space and on the target space

Observation:



Brackets on the state space and on the target space

GENERALISED GEOMETRY natural in the symplectic
setting (P, 2), via HAMILTONIAN SECTIONS:

Xp=Zh®hekerdg c T(EOP),  ECOP:= A'"TP @ A'T*P — P
and Q-TWISTED VINOGRADOV BRACKET:
[xm > 36/72}3 = [«%Vm > %hz]@(%dehg — %thdh1 + %hH%thQ) = x{fh ol

Given the manifold structure on the space of o-model fields, we
can look for bracket structures on EC)(MUQUT) - MUQUT
on o-SYMMETRIC SECTIONS, with a

CANONICAL 9o . (2(10) 0
VINOGRADOV STRUCTURE D Fo = (ENDPo, [, - v s ate, )

to



Brackets on the state space and on the target space

GENERALISED GEOMETRY natural in the symplectic
setting (P, 2), via HAMILTONIAN SECTIONS:
Xp=2h®hekerdg c [(EMVOP),  EAOP .= ATTP o A'T*P — P
and Q-TWISTED VINOGRADOV BRACKET:
[Zn, , X ]y = [ iy » Zip | © (Zy 20hp — Zipy 10y + Zipy 3 Xy 3Q) = Xy}

Given the manifold structure on the space of o-model fields, we
can look for bracket structures on EC(MUQUT) - MUQUT
on o-SYMMETRIC SECTIONS, with a to

CANONICAL op . (FOOP . 1%
VINOGRADOV STRUCTURE D To = (B Po, [, -1V, ate, )

The answer is known for P, 3: Courant algebroid ¢"M on

EU-DM with Courant bracket twisted by H a la Severa—Weinstein,
Hitchin-isomorphic with ¢gM



Brackets on the state space and on the target space — ctd.
Thm.:



Brackets on the state space and on the target space — ctd.

In the presence of defects, the answer given by (Aq := 15 — ¢7)
S)'71(170)7(H7w;AO)(I\/I U O) = (E(171)M U E(LO)Qv [[ Ty T ]](H,W;AQ)7 ('7 ')J aaT(MLIO))
with TWISTED BRACKET on ; = (0;,%5,) = (; @ v;, % @ &)
[T, QIQ]](H,W;AQ)‘M = [M“t/1 . MVZ] @ (EM‘V‘] vp —$W2U1 — %d(AdA‘/]J'UQ — M1/24 v1) +M41/1_1M“1/2_1 H) )

101, T2 g = [, Ml @ (Wiades — Doadey + o Wonw + 3 (P42 Bgus — Wiunguy)),

(B1, Vo), =3 M4 505 + My i)
Study of automorphisms and Hitchin-type iso’s

(1O (Hwida) (M 1) Q) m&;”(gi’(?;o;AO)(M UQ)

indicate that generalised geometry is a natural generalisation of the
geometry of TM in the presence of B&tbY (MU QU T)



Brackets on the state space and on the target space — ctd.

In the presence of defects, the answer given by (Ag := 5 — ()
m(170)7(H7W;AQ)(M |_| O) = (E(171)M u E(17O)Q7 [[ oy © ]](Hvl“);ACJ)7 (.7 .)J 7aT(M|_|O))
with TWISTED BRACKET on ; = (0;,95;) = (¥ @ vj, % & &;)

[T, QIQ]](H,w;AO)‘M = [M“t/1 . M"t/z] ® (thq vo —$MV2U1 — %d(M“VHUQ — MV?J v1) +M4;/1_1M“1/24 H) )

(1, B2 g = %, Wp) @ (P4udeo — Hpudey + P40 Hpuw + . (Y15 8gvs — Woungur)),

(B1, Vo), =3 M4 505 + My i)
Study of automorphisms and Hitchin-type iso’s

(1O (Hwida) (M 1) Q) z)ﬁ%fg)”(f’f;Ao)(M UQ)

indicate that generalised geometry is a natural generalisation of the
geometry of TM in the presence of B&tbY (MU QU T)

In keeping with the above,

B can. induces a morphism in the category of twisted Courant
alaebroids on E(4D Q.



Gaugeability constraints for c-model symmetries



Gaugeability constraints for c-model symmetries

Internal symmetries of S, = 0-SYMMETRIC ,-ALIGNED SECTIONS
Loz*q%/a — MJi/a’La(Q)
dHMﬁa = 0

dwoﬁa aF AQK/a =0

ﬁa — (Mﬁa? Qﬁa) — (M'%/a EB /‘ia; Q’% @ ka) bl

ac1,dimg,,,

The corresponding hamiltonian sections
Ry = e riomlriom > [ Ry, L:r, (ECYMUECDQ) - r(ETOP,),
written in terms of the canonical 1-form 61 _u € Q'(T*L, M), obey
. . QU —_—
[Ras Ro | = [[8a, Rp]|Hw0)
The realisation of ¢,,, on the state space becomes hamiltonian iff
[8a, fp]|129) = £,0 e



Gaugeability constraints for c-model symmetries — ctd.

Conclusion:



Gaugeability constraints for c-model symmetries — ctd.

Conclusion:



Gaugeability constraints for o.-model symmetries — ctd.
Necessary conditions of gaugeability of ¢, :

(®a€1,dimég7ba Rﬁa? [[ Ty T ]](H,w;AQ)) = EU,LQ A\ (ﬁa, ﬁb )J =0

The ‘isotropy’ condition nullifies the anomaly of the Poisson
algebra of the Noether currents.

Equivalently, the gaugeability relations ensure the existence of a

£, .. -equivariantly closed extension H of H,and a t5 .. -€quivariant
extension @ of w in the Cartan model of ¢, , -equivariant cohomology
of MU Q, s.t.

dH =0, dio = —AQH

for dn(X) = dn(X) + X2 #aun(X), X € b,



The gauged o-model



Motivation for & problems with gauging

I Motivation:

1.1
1.2

Il Problems:

|

1.2



Equivariant structures



Equivariant structures

Observation:



Equivariant structures

Observation:
‘Problem’:



Equivariant structures - ctd.



Equivariant structures - ctd.

Observation:



Equivariant structures - ctd.

Observation:
‘Problem’:

Thm.:



The coupling of the world-sheet gauge field
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The coupling of the world-sheet gauge field

Observation:



The coupling of the world-sheet gauge field
Gauging G prerequires replacing X € C'(Z, ML Q)
with X € I'(P xg (MU Q)) for
principal G-bundle G < P — ¥, with principal G-connection A € Q' (P)®g

The study of the conditions of invariance (for P trivial) of
Sot0p[(T5 X)] = Sortop[(T, X)] +/ (X x id):)*CA—i—/ (X xidr)[r)*pa,
x r
Ca(o,m) = —aa(m) A A%(0) + 3 Bap(M) A A AP(0),  pa(o, m) = va(m) A%(o)
leads to the definitions
Ga = P3G®I,,,  palp,m):= —ra(m) AA%p) + § (MAaurp)(m) A% A A%(p),
P4 = pp®®Tn,,  da(p,m) = ka(m) A%(p)
G4 carries a canonical structure of a (G, 0)-equivariant gerbe

on P x M, and &4 carries a canonical structure of a (G, 0)-equivariant
G4-bi-brane on P|r x Q.



The coupling of the world-sheet gauge field — ctd.

Corollary:



The coupling of the world-sheet gauge field — ctd.

(Ga,P4) descend to unique (equivalence classes of)
(Ga,P4) over P xg (MU Q), and so can be used to define the
G-GAUGED o-MODEL
So[(T, X); A7) = S, xin[X; A, 7] — i log Holg 5 (. X),

with S, in[X; A, ] obtained through minimal coupling.

Recall that the gauge group Gy is the set (P xaac G) with the group
operation induced from

[(P;g1)] - [(P: @2)] := [(P: 91 - G2)]
and with the action on P induced by
(P xad6 G) x P — P : ([(ri(o,9), W], 7i(e, ) — i(o, h-g) =: [(7i(o,9), h)] > 7i(0, ) -
as per
At T(Pxaa6G) X P— P (xi,7i(0,9)) = xi(0) > 7i(0,9) =: Ay (1i(, 9)) -



The coupling of the world-sheet gauge field — ctd.

Thm.:

Proof:






Outlook
understanding T-duality, with particular emphasis on geometric
structures behind the metric, the torsion and the dilaton;
construction of spaces modelled on toroidal bundles only locally;

including supersymmetry in the generalised geometric framework
with a 2-categorial twist;

study of the effective gerbe-twisted gauge field theory and the
emergent geometry of bi-branes in the gerbe-theoretic context;

gerbe theory vs criticality (generalised Ricci flows?);

‘holographic principle’ for higher categorial structures;
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