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Introduction and Motivation

D In physics we encounter differential equations up to second order in derivatives

D In cosmology interest in higher derivative self-interactions, e.g. for scalar fields

Most general theory with second-order field equations?



Gravity+

Most general metric theory with second-order field equations in D dimensions?

_ D = 4  General relativity

_ D = 5  Einstein-Hilbert + Gauss-Bonnet

_ D = D  Lovelock

Most general metric-scalar theory with second-order field equations in D = 4?

_ Horndeski theory



Scalar+

D The answer in flat spacetime of D ≥ n is given by (a sum over) Galileons
Nicolis, Rattazzi, Trincherini ’08

Ln+1[π] = Ai1...in j1...jn
(2n) ∂i1π ∂j1π ∂i2∂j2π . . . ∂in∂jnπ ,

where
Ai1...in j1...jn

(2n) =
1

(D − n)!
εi1...ink1...kD−nεj1...jn

k1...kD−n .

D The name reflects the internal Galilean invariance under δπ = c + bix i

D The first few Lagrangians are

L2 = − 1
2 (∂π)

2, L3 = − 1
2 (∂π)

2�π, L4 = − 1
2 (∂π)

2
[
(�π)2 − (∂i∂jπ)

2
]
, . . .

D Covariantization yields scalar-tensor theories in any D (in 4 ≡ Horndeski)
Deffayet, Esposito-Farese, Vikman ’09

Also, scalars with up to 2nd order eoms, Galileon-type p-forms, multiple species.
Deffayet, Deser, Esposito-Farese ’09, ’10; Deffayet, Mukohyama, Sivanesan ’16 &c.



Our Goals

3 A universal, index-free formulation for all Galileons and their generalizations

_ with graded variables motivated by the “double-ε” structure

3 Generalization to mixed-symmetry tensor fields (p, q) (beyond spin-1)

_ Young diagrams with 2 columns as generalized gauge fields Curtright ’85

_ Dual graviton / exotic dualizations de Medeiros, Hull ’02

_ E11 West ’04 / Exotic branes Bergshoeff, Riccioni ’10; A.Ch., Gautason, Moutsopoulos, Zagermann ’13



Graded formalism

Extend the bosonic coordinates (x i) by two sets of anticommuting (θi) and (χi):

θiθj = −θjθi , χiχj = −χjχi , θiχj = χjθi .

Represent a p-form ω(p) in two ways:

ω(p) = 1
p!ωi1...ipθ

i1 . . . θip , ω̃(p) = 1
p!ωi1...ipχ

i1 . . . χip .

Introduce two nilpotent and mutually commuting exterior derivatives:

d = θi∂i and d̃ = χi∂i .

Use Berezin integration to integrate over the graded variables:∫
dθ θ = 1 ,

∫
dDθ θi1 . . . θiD = εi1...iD .



Scalar and p-form Galileons

Scalar Galileon

Ln+1[π] = − 1
(D−n)!

∫
dDθ dDχηD−n π (dd̃π)n , (η = ηijθ

iχj)

The field equations are 2nd order: En+1 = − n+1
(D−n)!

∫
dDθ dDχηD−n(dd̃π)n = 0

***

p-form Galileon

L2n[ω] =
1

(D−(p+2)n+1)!

∫
dDθ dDχηD−(p+2)n+1 dω d̃ω̃ (dd̃ω̃)n−1 (d̃dω)n−1 .

N.B.: For p = 2k + 1⇒ (dd̃ω)2 = (dd̃ω̃)2 = 0  only n = 1 for odd-forms, e.g.:

LMaxwell[A] = −
1
2

∫
d4θ d4χη2 dA d̃Ã ,

unless mixed contractions are considered for p = 3, 5, . . . Deffayet et al. ’16



Mixed-symmetry tensor fields

ω[i1...ip ][j1...jq ]  (p, q) tensor field

GL(D)-irreducibility

T[i1...ip j1]...jq = 0 and T[i1...ip ][j1...jq ] = T[j1...jq ][i1...ip ] , for p = q .

e.g. for p + q = 2, a 2-form (2,0) and a graviton (1,1);
for p + q = 3, a 3-form (3,0) and a mixed (2,1);
for p + q = 4, a 4-form (4,0), a mixed (3,1) and a “special” mixed (2,2); etc.

Natural description in terms of the graded variables:

ω(p,q) = 1
p!q!ωi1...ip j1...jqθ

i1 . . . θipχj1 . . . χjq ,

ω̃(q,p) = 1
p!q!ωi1...ip j1...jqχ

i1 . . . χipθj1 . . . θjq ,

and the same derivatives d and d̃; no need for additional ingredients.



Mixed-symmetry Galileon and its Symmetry

For a single mixed-symmetry tensor field ω, the Galileon is (k = (p + q + 2)n − 1):

S2n[ω] =
1

(D−k)!

∫
dDx

∫
dDθ dDχηD−k dω d̃ω̃ (dd̃ω)n−1 (dd̃ω̃)n−1 .

For p + q = odd, it vanishes (unless n = 1) due to the grading.

Its symmetry depends on the values of p and q. The possibilities are:

δω(p,q) =


dλ(p−1,q) + d̃λ′(p,q−1)

+ bi0 i1...ip+q x i0θi1 · · · θipχip+1 · · ·χip+q (p, q > 0)
dλ(p−1,0) + bi0 i1...ip x i0θi1 · · · θip (p > 0, q = 0)
d̃λ′(0,q−1)

+ bi0 i1...iq x i0χi1 · · ·χiq (p = 0, q > 0)
c + bix i (p = q = 0)

with b fully antisymmetric (and constant).

N.B.: For p, q > 0, the last term does not survive irreducibility.

Easily generalized for towers of fields and up-to-second-order...



Special cases with enhanced structure

Recall: Scalar (0,0) led to more possibilities (odd number of fields) than p-form (p,0)

Similarly: A special mixed-symmetry field (p,p) allows more terms than a generic (p, q):

Ln+1[ω
(p,p)] =

1
(D − k)!

∫
dDθ dDχηD−k dω d̃ω (dd̃ω)n−1 , k = (p + 1)n + p .

This is not so surprising. After all, p = 1 is the graviton, and it works in all dimensions.



(1,1) Galileon and Linearized Gravity

In four dimensions, the Galileon for h = ω(1,1) is identical to linearized Einstein-Hilbert:

SLEH[h] = −
1
2

∫
d4x hij (Rij − 1

2ηijR
)
= −1

4

∫
d4x

∫
d4θ d4χη h dd̃h ,

where Rij =
1
2

(
∂i∂k hk

j + ∂k∂jhk
i − ∂i∂jh − ∂2hij

)
, R = ηijRij .

The gauge transformations become identical to linearized diffeomorphisms:

δh = dλ(0,1) + d̃λ(1,0) .

***

In D ≥ 2n + 1 dimensions, the (1,1)-Galileon is linearized Lovelock at n-th order:

SLL
n [h] = −1

4
1

(D − 2n − 1)!

∫
dDx

∫
dDθ dDχηD−2n−1 h (dd̃h)n .

Recall that Lovelock is a sum over dimensionally extended Euler densities:

SLovelock =

∫
dDx

bD−1
2 c∑

n=0

αnLn , Ln =

√
−g
2n δ

k1 l1...kn ln
i1 j1...in jn

n∏
r=1

R ir jr
kr lr .



Covariantization

Scalar and p-form Galileons can be extended non-trivially to curved spacetime
Deffayet, Esposito-Farese, Vikman ’09

_ Promote partial derivatives to covariant

_ Identify higher-derivative contributions on the field and the metric

_ Introduce compensator terms to cancel 3 and 4 derivatives

Can we covariantize tensor Galileons?



Caution

D No-go theorem for interacting massless gravitons (at 2-derivative level)
Boulanger, Damour, Gualtieri, Henneaux ’00

D Unlike scalars and p-forms, where ∇i = ∂i , for mixed-symmetry tensors ∇i 6= ∂i

_ Additional complications, more higher-derivative terms

D Success (2-derivative field equations) does not guarantee consistency
Aragone, Deser ’80

Just do it
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The Gauss-Bonnet case

Defining

∇ = θi∇i , ∇̃ = χi∇i , Riem = Rijklθ
iθjχkχl ,

h̃l = hliθ
i , H l = Hlijθ

iχj , Hlij =
3
4∇lhij −∇(ihj)l ,

where ∇ = ∇g , the following action has 2nd order EOMs w.r.t. both g and h:

S3[h, g] = SLL[g] +
∫

d5x
∫

d5θ d5χ
√
−g

(
∇h ∇̃h∇∇̃h + ∇̃h h̃l H l Riem

)
.



Epilogue

Take-home messages

_ Galileon-type Lagrangians have a beautiful structure and physical applications

_ We suggested a natural and universal formulation in terms of graded variables ...

_ ... which reveals a further generalization to mixed-symmetry tensor fields ...

_ ... by-producing an elegant formula for linearized Lovelock in any dimension ...

_ ... and a highly non-trivial covariantization for linearized 5d Gauss-Bonnet

thanks
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