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Motivation: What is double field theory?
Canonical momenta and winding

I Sigma model X : Σ→ M = T d

S =

∫
Σ

hαβ∂αX
i∂βX

jGij dµΣ +

∫
Σ

X ∗B ,

where h ∈ Γ(⊗2T ∗Σ), G ∈ Γ(⊗2TM), B ∈ Γ(∧2T ∗M).

I Classical solutions to e.o.m. (take closed string Σ = R× S1)

X i
R = x i0R+αi

0(τ − σ) + i
∑
n 6=0

1

n
αi
ne
−in(τ−σ) , X i

L = . . . ,

αi
0 =

1√
2
G ij
(
pj − (Gjk + Bjk)wk

)
,

I pk : Canonical momentum zero modes
I w k : Winding zero modes, w k := 1

2π

∫ 2π

0
∂σX

kdσ.



Motivation: What is double field theory?
Two sets of coordinates

I Two sets of momenta in αi
0 → differential operators:

pk ' 1
i ∂k , wk ' 1

i ∂̃
k .

I Level matching L0 − L̄0, with L0 = 1
2α

i
0Gijα

j
0 + N − 1 gives

N − N̄ = ∂i ∂̃
i

I Want: If two fields obey the constraint, then also their product.
Thus choose a subset, which also has:

∂kφ ∂̃
kψ + ∂̃kφ∂kψ = 0 ,

for all elements φ, ψ of the subset.



Motivation: What is double field theory?
O(d , d)-transformations, generalized tangent bundle, Gualtieri, Hitchin

Observation 1: The strong constraint is given by

ηMN ∂Mφ∂Nψ = 0 , η =

(
0 1
1 0

)
And stays the same if we apply a constant transformation that leaves η
invariant:

At η A = η i.e. A ∈ O(d , d ;R)

Observation 2: This is the structure group of the generalized tangent
bundle, locally isomorphic to TM ⊕ T ∗M:

I Sections: TM ⊕ T ∗M 3 s = s i ∂i + si dx
i .

I Fundamental rep of O(d , d): sM := (s i , si ).

I Bilinear pairing η: 〈s, t〉 = s i ti + si t
i = ηMNs

MtN .



Motivation: What is double field theory?
Action of DFT, C-bracket, Hohm, Hull, Zwiebach

Observation 3:

SDFT =

∫
d2Dx e−2d

(
1
8HMN∂

MHKL∂
NHKL − 1

2HMN∂
MHKL∂

LHKN

−2∂Md ∂NHMN + 4HMN∂
Md ∂Nd

)
.

Properties:

I The action as a global O(d , d ;R)-symmetry, and a gauge symmetry
given by applying the generalized Lie derivative:

(δXH)MN := XP∂PHMN+(∂MXP−∂PXM)HPN+(∂NX
P−∂PXN)HMP .

I The commutator of two such transformations gives the C-bracket:

[V ,W ]MC := V K∂KW
M−W K∂KV

M− 1
2

(
V K∂MWK −W K∂MVK

)
.



Questions

I What is the geometric meaning of double fields,
such as d(x , x̃),VM(x , x̃),HMN(x , x̃)? At least
locally?

I Is there an algebraic way to understand the
C-bracket?

I How does this apply to the Lie- and Courant
bracket?



(Pre)-NQ-manifolds and derived brackets
Motivation: An easy calculation...

Given a manifold M, consider T [1]M with local coordinates (xµ, ξµ). Its
cotangent bundle locally has (xµ, ξµ, pµ, ξ

∗
µ) and is Poisson:

{pµ, xν} = δνµ {ξ∗µ, ξν} = δνµ .

Let’s take the operator Q = ξµpµ, and vector fields X = Xµξ∗µ,
Y = Y νξ∗ν , then we can do the following exercise:

{
{Q,X},Y

}
=
{
{ξµpµ,X νξ∗ν},Y ρξ∗ρ

}
=
{
ξµ∂µX

νξ∗ν + X νpν ,Y
ρξ∗ρ

}
=− Y ρ∂ρX

νξ∗ν + X ρ∂ρY
νξ∗ν

= [X ,Y ]νLieξ
∗
ν .

We say, that the Lie bracket is a derived bracket (due to
Kosmann-Schwarzbach, Roytenberg, Voronov).



(Pre)-NQ-manifolds and derived brackets
Important definitions

Definition 1.
A symplectic pre-NQ-manifold of N-degree n is an N-graded manifold
M, together with symplectic form ω of degree n and a vector field Q of
degree 1, satisfying LQω = 0.

Examples

An important class where in addition Q2 = 0, are the Vinogradov Lie
n-algebroids:

Vn(M) := T ∗[n]T [1]M .

They have the following properties:

I Local coordinates (xµ, ξµ, ζµ, pµ) of degrees 0, 1, n − 1, n.

I Symplectic form ω = dxµ ∧ dpµ + dξµ ∧ dζµ
I Nilpotent vector field Q with Hamiltonian Q = ξµpµ, i.e.
{Q,Q} = 0.



Constructing the brackets
Getzler, Fiorenza, Manetti

Let M be a symplectic pre-NQ-manifold. Functions on the body M are
degree-0 objects, i.e. f ∈ C∞0 (M). We choose as analogue of vector
fields degree (n − 1)-objects X ∈ C∞n−1(M), call them extended vector
fields. Then define n-ary brackets by

µ1(V ) =

{
{Q,V } , if V has degree 0

0 , otherwise

µ2(V ,W ) = 1
2 ({δV ,W } − {δW ,V })

µ3(V ,W ,U) =− 1
12 ({{δV ,W },U} ± . . . )

. . .

where δV :=

{
{Q,V } , if V has degree n − 1

0 , otherwise



Conditions for L∞-structure

If Q2 = 0, the above brackets form an L∞ structure. In our case we want
to investigate conditions that this is also true, especially for n = 2, where
we found the following

Theorem 1.
Consider the subset of C∞(M) consisting of functions and extended
vector fiels, i.e. C∞0 (M)⊕ C∞1 (M). If the Poisson brackets and the
maps µi close on this subset, the latter is an L∞-algebra if and only if

{Q2f , g}+ {Q2g , f } =0 ,

{Q2X , f }+ {Q2f ,X} =0 ,

{{Q2X ,Y },Z}[X ,Y ,Z ] =0 ,

for all functions f , g and extended vector fields X ,Y ,Z. The notation
Q2f means {Q, {Q, f }} and the subscript [X ,Y ,Z ] means the
alternating sum over X ,Y ,Z.



n = 1: Standard Lie bracket
Obtaining our toy example

Now, lets apply the construction to different cases.

Let M be a Riemannian manifold. As graded manifold, we take
M = V1(M), which has coordinates (xµ, ζµ) of degree 0 and (ξµ, pµ) of
degree 1. Then we have:

I As Q = ξµpµ which squares to zero in V1(M), there are no further
restrictions.

I Vector fields are linear functions in ζµ.

I µ1 gives the de Rham differential.

I µ2(X ,Y ) = 1
2

({
{Q,X},Y

}
−
{
{Q,Y },X

})
= [X ,Y ]µLieζµ .

I µ3 vanishes due to the Jacobi identity for the Lie bracket.

So, we recover the standard Lie bracket as a derived bracket.



n = 2: Courant bracket
Roytenberg, Weinstein

For a manifold M, take now V2(M). Locally, coordinates are
(xµ, ξµ, ζµ, pµ) of degrees 0, 1, 1, 2. We get

I Q = ξµpµ squares to zero.

I Extended vectors, i.e. degree 1 objects, are now the “generalized
vectors”, i.e. V = Xµζµ + αµξ

µ, W = Y µζµ + βµξ
µ.

I µ1 is the de Rham differential.

I µ2(V ,W ) = [X ,Y ]µζµ + (LXβ − LYα− 1
2d(ιXβ − ιYα))µξ

µ, i.e.
we get the Courant bracket.

I µ3 gives the the defect to the Jacobi identity for Courant algebroids.

So we recover generalized geometry on a Courant algebroid.



n = 2: C-bracket
New result: Interpretation of the C-bracket

We take the same setting as before, but instead of M as base, we take
T ∗M, i.e. we take V2(T ∗M). Local coordinates are now
(xM , ξM , ζM , pM) of degree (0, 1, 1, 2).

Problem: We now have too many “vectors”. We solve this by defining

θM := 1√
2

(ξM + ηMNζN) and βM := 1√
2

(ξM − ηMNζN) ,

and taking only θM as degree-1 coordinates. Taking

ω = dxM ∧ dpM + 1
2 ηMNdθ

M ∧ dθN , Q = θMpM ,

we get a pre-NQ-manifold (as Q doesn’t square to zero, but we have
LQω = 0 for the corresponding vector field).



n = 2: C-bracket
New result: Interpretation of the C-bracket

With this we get the following results:

I µ1(f ) = θM∂M f , i.e. the de Rham differential on the doubled space.

I For vectors X = XMθ
M , Y = YMθ

M we get, using
ηMNXM∂N = XN∂N etc.

µ2(X ,Y ) = (XM∂MYK−YM∂MXK− 1
2 (YM∂KXM−XM∂KYM))θK ,

i.e. the C-bracket of double field theory.

I µ3 gives the defect to the Jacobi identity of the C-bracket.



n = 2: C-bracket
New result: Interpretation of the C-bracket

So the formulas give us double field theory, but
what about the constraints for Q2?



n = 2: C-bracket
The strong constraint

To have a proper L∞-structure, we still have to implement the
constraints of our theorem. What are they? Let f be a function and
X = XMθ

M , Y and Z be extended vectors.

I {Q2f , g}+ {Q2g , f } = 2∂M f ηMN∂Ng = 0
This is the strong constraint.

I {Q2X , f }+ {Q2f ,X} = 2(∂MXKθ
K )ηMN∂N f = 0

This is the strong constraint for vectors and functions.

I {{Q2X ,Y },Z}[X ,Y ,Z ] = 2θK ((∂MXK )(∂MY N)ZN)[X ,Y ,Z ] = 0
Additional constraint for vectors? ...Shows up in properties of the
Riemann tensor of double field theory

So the strong constraint together with the third constraint ensure the
L∞-structure for vectors and functions.



Outlook
What we did...

We found a unifying language to describe the Lie bracket, Courant
bracket and C-bracket. The strong constraint plays a role to ensure an
L∞-structure on functions and vectors. What I didn’t describe in the
talk:

I In all three cases, arbitrary tensors can be defined, extended Lie
derivatives and the action of infinitesimal extended diffeomorphisms.

I We get a whole “derived geometry”, including torsion,
Gualtieri-torsion and Riemann tensors (so far for n = 1, 2).

I Writing down integration densities and Einstein-Hilbert actions for
extended metrics for the cases n = 1 and n = 2 was possible. In
general?...long calculations!

I NS-NS fluxes can be added by twisting the corresponding
Vinogradov algebroids. This is interesting for flux compactification
and T-duality.



Outlook
Open questions

I Everything was local. Global analysis? Gerbes, groupoids... What is
the global description of double field theory? T-duality?

I For higher Vinogradov algebroids Vn(M), degree n − 1-objects are

X = Xµζµ + Xµ1...µn−1ξ
µ1 · · · ξµn−1 ,

i.e. sections of TM ⊕ ∧n−1T ∗M. For n = 3, we get the easiest case
of exceptional generalized geometry, where the U-duality group is
SL(5,R). How about the other exceptional tangent bundles?

I What are torsion and Riemann tensors in exceptional generalized
geometries? Do they have a meaning in Poisson geometry on certain
Vinogradov algebroids?

I Quantization: If we can write the brackets in terms of Poisson
brackets, we can do deformation quantization!



Appendix: Covariant derivatives, torsion and curvature
Covariant derivatives

Definition 2.
An extended covariant derivative ∇ on a pre-NQ-manifold M is a
linear map from the set X (M) of extended vectors to C∞(M), such that
the image ∇X for X ∈ X (M) gives a map {∇X , ·} : X (M)→ X (M),
which satisfies

{∇fX ,Y } = f {∇X ,Y } and {∇X , fY } = {{Q,X}, f }Y + f {∇X ,Y } ,

for all functions f and extended vectors Y . For arbitrary extended tensors
extend this by the graded Leibniz rule of the Poisson bracket

{V ,W ⊗ U} := {V ,W } ⊗ U + (−1)(n−|W |)|U|W ⊗ {V ,U} ,

where V ,W ,U ∈ C∞(M) and |W | denotes the degree.



Appendix: Covariant derivatives, torsion and curvature
Covariant derivatives

Some remarks

I Pointwise, X is a vector space, so we can consider also its dual. For
torsion and curvature we use X̂ := X ⊕ X ∗.

I We also denote by π : X̂ → X the projection to the first summand.

I In the following we will deal with V1 and the restricted V2 suitable
for double field theory. In these cases, one can show that the
following functions have the right properties:

∇X =Xµpµ − XµΓρµνζρξ
ν ,

∇X =XMpM − 1
2 X

MΓMNKθ
NθK .



Appendix: Covariant derivatives, torsion and curvature
Extended torsion

Definition 3.
Let M be a pre-NQ-manifold. Given an extended connection ∇, we
define the extended torsion tensor T : ⊗3X̂ (M)→ C∞(M) for
X ,Y ,Z ∈ X̂ (M) by

T (X ,Y ,Z ) := 3
(

(−1)n|X |
{
X , {∇π(Y ),Z}

})
[X ,Y ,Z ]

+
(−1)n(|Y |+1)

2
({X , {QZ ,Y }} − {Z , {QX ,Y }}) ,

where |X |, |Y | denote the respective degrees, π is the above defined
projection and n = 1, 2 is the degree of the underlying Vinogradov
algebroid.

With this definition, we are able to show the following results relating
extended torsion to standard ones:



Appendix: Covariant derivatives, torsion and curvature
Extended torsion

Theorem 2.
For M = V1(M), let X ∈ X ∗(M) and Y ,Z ∈ X (M), then the extended
torsion reduces to the torsion operator
T (X ,Y ,Z ) = 〈X ,∇YZ −∇ZY − [Y ,Z ]〉, where the bracket is the Lie
bracket of vector fields. More generally, this is true whenever we take one
element of X ∗(M) and the other two in X (M). In all other cases the
extended torsion vanishes. In case of double field theory, for extended
vector fields X ,Y ,Z, the extended torsion tensor equals the Gualtieri
torsion of generalized geometry.



Appendix: Covariant derivatives, torsion and curvature
Extended curvature

Definition 4.
Let M be a pre-NQ-manifold. Given an extended connection ∇, the
extended curvature operator R : ⊗4X̂ (M)→ C∞(M) for
X ,Y ,Z ,W ∈ X̂ (M) is defined by

R(X ,Y ,Z ,W ) :=

1

2

({{
{∇X ,∇Y } − ∇µ2(X ,Y ),Z

}
,W
}
− (−1)n(Z ↔W )

+
{{
{∇Z ,∇W } − ∇{∇Z ,W}−{∇W ,Z},X

}
,Y
}
− (−1)n(X ↔ Y )

)
.

Reminder: µ2 is the C-bracket in the derived-bracket form.



Appendix: Covariant derivatives, torsion and curvature
Extended curvature

Theorem 3.
For M = V1(M), let X ,Y ,Z ∈ X (M) and W ∈ X ∗(M). Then the
extended curvature reduces to the standard curvature:

R(X ,Y ,Z ,W ) = 〈W ,∇X∇YZ −∇Y∇XZ −∇[X ,Y ]Z 〉 .

Furthermore, if X ,Y ,Z ,W ∈ X (M) or if two, three or all of X ,Y ,Z ,W
are in X ∗(M), we have R(X ,Y ,Z ,W ) = 0. Moreover, in case of double
field theory, extended curvature is the Hohm-Zwiebach curvature.
Tensoriality holds by the constraints given in theorem 1.

It is the last sentence, where the algebraic setting becomes important for
geometry.
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