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Motivation: What is double field theory?

Canonical momenta and winding
» Sigma model X : ¥ - M = T¢
S = / h*P 9, X 05X Gy dpux + / X*B
b px
where h € T(22T*Y), G € [(®2TM), B € T(A2T*M).
» Classical solutions to e.o.m. (take closed string ¥ = R x S1)

XR = X0R+OZ0 + IZ O[’ e_’"(T ) s X[ = ...
n#0

. 1 .
ap = EGU<PJ — (G + Bjk)Wk) :

> pk Canonical momentum zero modes

2
» w*: Winding zero modes, w* := = OW&,X’(dJ.



Motivation: What is double field theory?

Two sets of coordinates

» Two sets of momenta in oy — differential operators:

pk:%ak, w":%ak.
» Level matching Ly — Ly, with Lo = %aé G,-jaf{) + N — 1 gives
N—N =50

» Want: If two fields obey the constraint, then also their product
Thus choose a subset, which also has:

np O+ 8 pOkp =0,

for all elements ¢, 1) of the subset.



Motivation: What is double field theory?

O(d, d)-transformations, generalized tangent bundle, Gualtieri, Hitchin

Observation 1: The strong constraint is given by

0 1
UMN 8M¢8Nw = Oa n= (1 0)

And stays the same if we apply a constant transformation that leaves 7
invariant:

AtnA=1n ie. A€ 0(d,d;R)
Observation 2: This is the structure group of the generalized tangent
bundle, locally isomorphic to TM & T*M:
» Sections: TM ® T*M 3 s =s'0; + s; dx'.
» Fundamental rep of O(d,d): sM := (s} s;).

» Bilinear pairing n: (s, t) = s't; + s;t’ = nynsMtN.



Motivation: What is double field theory?

Action of DFT, C-bracket, Hohm, Hull, Zwiebach
Observation 3:
Sprr = /dZDx e72d(%HMNaMIHKLaN/HKL -~ %"HMNaM"H,KLaL’HKN
—20Md 9" H + 4Hund"d " )

Properties:

» The action as a global O(d, d;R)-symmetry, and a gauge symmetry
given by applying the generalized Lie derivative:

(5)(7'[)/\///\/ = XpﬁerMN—|—(8/\//XP—8PXM)HPN+(8NXP—8PXN)HMP .

» The commutator of two such transformations gives the C-bracket:

[V, WY = VEgWM — WKa vM — 1 (vKaM Wi — WK M VK) .



Questions

» What is the geometric meaning of double fields,
such as d(x, %), VM(x, %), Hun(x, X)? At least
locally?

» Is there an algebraic way to understand the
C-bracket?

» How does this apply to the Lie- and Courant
bracket?



(Pre)-NQ-manifolds and derived brackets

Motivation: An easy calculation...

Given a manifold M, consider T[1]M with local coordinates (x*,&). Its
cotangent bundle locally has (x*,&", p,, ;) and is Poisson:

{pu:x"} =0, {&,6" =0y

Let's take the operator Q@ = £¥p,,, and vector fields X = X*¢7,
Y = Y¥¢}, then we can do the following exercise:

{te.xy v} ={{epuxer vee |
= {0, X + X p,, Y75 }
= — YPO,XVE + XPO, YV
=X YIS -

We say, that the Lie bracket is a derived bracket (due to
Kosmann-Schwarzbach, Roytenberg, Voronov).



(Pre)-NQ-manifolds and derived brackets

Important definitions

Definition 1.

A symplectic pre-NQ-manifold of N-degree n is an N-graded manifold
M, together with symplectic form w of degree n and a vector field Q of
degree 1, satisfying Low = 0.

Examples
An important class where in addition Q% = 0, are the Vinogradov Lie
n-algebroids:
V(M) := T*[n| T[1]M .

They have the following properties:

> Local coordinates (x*,£*, (., pu) of degrees 0,1,n—1, n.

» Symplectic form w = dx* A dp,, + d§* A d(,

> Nilpotent vector field @ with Hamiltonian Q = £#p,,, i.e.

{Q,9} =0.



Constructing the brackets

Getzler, Fiorenza, Manetti

Let M be a symplectic pre-NQ-manifold. Functions on the body M are
degree-0 objects, i.e. f € C§°(M). We choose as analogue of vector
fields degree (n — 1)-objects X € C3°;(M), call them extended vector
fields. Then define n-ary brackets by

Q,V}, if V has degree 0
, otherwise
{Q,V}, if V has degree n—1

0, otherwise

where §V = {



Conditions for L.-structure

If Q% =0, the above brackets form an L, structure. In our case we want
to investigate conditions that this is also true, especially for n = 2, where
we found the following

Theorem 1.

Consider the subset of C*°(M) consisting of functions and extended
vector fiels, i.e. C°(M) @ Cs°(M). If the Poisson brackets and the
maps p; close on this subset, the latter is an L,-algebra if and only if

{Q*f,g} +{Q%,f} =0,
{Q°X, f} +{Q°f, X} =0,
{{QzX, Y}7 Z}[X,Y,Z] =0 )
for all functions f, g and extended vector fields X,Y,Z. The notation

Q*f means {Q,{Q, f}} and the subscript [X, Y, Z] means the
alternating sum over X, Y, Z.



n = 1: Standard Lie bracket

Obtaining our toy example

Now, lets apply the construction to different cases.

Let M be a Riemannian manifold. As graded manifold, we take
M = V;(M), which has coordinates (x*,(,) of degree 0 and (£, p,) of
degree 1. Then we have:

> As Q = &#p,, which squares to zero in Vi(M), there are no further
restrictions.

> Vector fields are linear functions in (.
> 11 gives the de Rham differential.

> (X, Y) = 3({1e.xy v} - {1e v x}) = X VTG
> 13 vanishes due to the Jacobi identity for the Lie bracket.
So, we recover the standard Lie bracket as a derived bracket.



n = 2: Courant bracket
Roytenberg, Weinstein

For a manifold M, take now V,(M). Locally, coordinates are
(x*,&",Cus pp) of degrees 0,1,1,2. We get
> Q= ¢Fp, squares to zero.
Extended vectors, i.e. degree 1 objects, are now the “generalized
vectors”, i.e. V = X¥(, + a8t W = YH(, + B.EH.
w1 is the de Rham differential.
/JQ(V, W) = [X, Y]HC# + (Lxﬁ —Lya — %d(Lxﬁ — Lya))uf”, ie.
we get the Courant bracket.
> u3 gives the the defect to the Jacobi identity for Courant algebroids.

v

v

v

So we recover generalized geometry on a Courant algebroid.



n = 2: C-bracket

New result: Interpretation of the C-bracket

We take the same setting as before, but instead of M as base, we take
T*M, i.e. we take V2(T*M). Local coordinates are now
(XM7 EMa CM? pM) of degree (07 17 13 2)

Problem: We now have too many ‘“vectors”. We solve this by defining
oM = (M 4 M) and BM = (M — Ve
and taking only 8™ as degree-1 coordinates. Taking
w= dx" Adpm + 2 nundd AdON, Q= 6Mpy,

we get a pre-NQ-manifold (as Q doesn't square to zero, but we have
Low = 0 for the corresponding vector field).



n = 2: C-bracket

New result: Interpretation of the C-bracket

With this we get the following results:
> n1(f) = OMOyf, i.e. the de Rham differential on the doubled space.
» For vectors X = Xy 0M, Y = Y™ we get, using
nMNX,V,aN = XNaN etc.
12(X, Y) = (XMop Y = YMOuXk — 3 (YMOk X — XMk Yin))0"

i.e. the C-bracket of double field theory.
> u3 gives the defect to the Jacobi identity of the C-bracket.



n = 2: C-bracket

New result: Interpretation of the C-bracket

So the formulas give us double field theory, but
what about the constraints for Q2?



n = 2: C-bracket

The strong constraint

To have a proper L,-structure, we still have to implement the
constraints of our theorem. What are they? Let f be a function and
X = Xu6M, Y and Z be extended vectors.
> {Q%f, g} +{Q%. f} = 20muf n""ong = 0
This is the strong constraint.
» {Q%X, )+ {Q%F, X} = 2(0mXx0MNoyf = 0
This is the strong constraint for vectors and functions.
> {({Q@°X, Y}, Z ix,v.z1 = 205 ((0M Xk)(Om YN) ZN)ix,v,2) = O
Additional constraint for vectors? ...Shows up in properties of the
Riemann tensor of double field theory

So the strong constraint together with the third constraint ensure the
L o-structure for vectors and functions.



Outlook

What we did...

We found a unifying language to describe the Lie bracket, Courant
bracket and C-bracket. The strong constraint plays a role to ensure an
Lo-structure on functions and vectors. What | didn't describe in the
talk:

> In all three cases, arbitrary tensors can be defined, extended Lie
derivatives and the action of infinitesimal extended diffeomorphisms.

» We get a whole “derived geometry”, including torsion,
Gualtieri-torsion and Riemann tensors (so far for n = 1, 2).

» Writing down integration densities and Einstein-Hilbert actions for
extended metrics for the cases n =1 and n = 2 was possible. In
general?...long calculations!

» NS-NS fluxes can be added by twisting the corresponding
Vinogradov algebroids. This is interesting for flux compactification
and T-duality.



Outlook

Open questions

» Everything was local. Global analysis? Gerbes, groupoids... What is
the global description of double field theory? T-duality?

» For higher Vinogradov algebroids V,(M), degree n — 1-objects are
X = XHCN + XN1~~Nn—1£ILl o ,5/%-1 )

i.e. sections of TM @ A" T*M. For n = 3, we get the easiest case
of exceptional generalized geometry, where the U-duality group is
SL(5,R). How about the other exceptional tangent bundles?

» What are torsion and Riemann tensors in exceptional generalized
geometries? Do they have a meaning in Poisson geometry on certain
Vinogradov algebroids?

» Quantization: If we can write the brackets in terms of Poisson
brackets, we can do deformation quantization!



Appendix: Covariant derivatives, torsion and curvature

Covariant derivatives

Definition 2.

An extended covariant derivative V on a pre-N Q-manifold M is a
linear map from the set X (M) of extended vectors to C*°(M), such that
the image Vx for X € X(M) gives a map {Vx, -} : X(M) = X (M),
which satisfies

{Ve, Y} = H{Vx, Y} and {Vx, Y} = {{Q X}, f}Y+{Vx, Y},

for all functions f and extended vectors Y. For arbitrary extended tensors
extend this by the graded Leibniz rule of the Poisson bracket

{(V,WaU}:={V, W} U+ (-1)Wlllw g {v, U},

where V., W, U € C*(M) and |W| denotes the degree.



Appendix: Covariant derivatives, torsion and curvature

Covariant derivatives

Some remarks

» Pointwise, X" is a vector space, so we can consider also its dual. For
torsion and curvature we use X ;= X @ X'*.

» We also denote by 7 : X — X the projection to the first summand.

> In the following we will deal with V; and the restricted V), suitable
for double field theory. In these cases, one can show that the
following functions have the right properties:

Vx :X“Pp - X'urpuuc;)fy ;
Vx =XMpy — L XM k0N oK



Appendix: Covariant derivatives, torsion and curvature

Extended torsion

Definition 3.

Let M be a pre-NQ-manifold. Given an extended connection V, we
define the extended torsion tensor 7 : @3X (M) — C>°(M) for
X,Y,Z e X(M) by

T(X,Y,Z) = 3((71)"”“ {x, {vﬂ(y),Z}})

(_1)n(\Y|+1)

[X,v,z]

where | X|,|Y| denote the respective degrees, m is the above defined
projection and n = 1,2 is the degree of the underlying Vinogradov
algebroid.

With this definition, we are able to show the following results relating
extended torsion to standard ones:



Appendix: Covariant derivatives, torsion and curvature

Extended torsion

Theorem 2.

For M =V (M), let X € X*(M) and Y,Z € X(M), then the extended
torsion reduces to the torsion operator

T(X,Y,Z)=(X,VyZ—-NzY —[Y,Z]), where the bracket is the Lie
bracket of vector fields. More generally, this is true whenever we take one
element of X*(M) and the other two in X(M). In all other cases the
extended torsion vanishes. In case of double field theory, for extended
vector fields X, Y, Z, the extended torsion tensor equals the Gualtieri
torsion of generalized geometry.



Appendix: Covariant derivatives, torsion and curvature

Extended curvature

Definition 4.
Let M be a pre-NQ-manifold. Given an extended connection V, the

extended curvature operator R : @*X (M) = C®(M) for
X,Y,Z,W € B(M) is defined by

RX,Y,Z, W) :=
1 n
5({{{VX’VY} = Vi) 2}, W} —(=D)"(Z = W)
+ {{{VZ’VW} — Vv wi—{vw.z} X} Y} —(-1)"(X « Y)) .

Reminder: p, is the C-bracket in the derived-bracket form.



Appendix: Covariant derivatives, torsion and curvature

Extended curvature

Theorem 3.
For M =V (M), let X,Y,Z € X(M) and W € X*(M). Then the
extended curvature reduces to the standard curvature:

R(X,Y,Z,W)=(W,VxVyZ -VyVxZ - VixyvZ).

Furthermore, if X,Y,Z,W € X(M) or if two, three or all of X, Y, Z, W
are in X*(M), we have R(X,Y,Z, W) = 0. Moreover, in case of double
field theory, extended curvature is the Hohm-Zwiebach curvature.
Tensoriality holds by the constraints given in theorem 1.

It is the last sentence, where the algebraic setting becomes important for
geometry.
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