The ASK/PSK-correspondence and the r-map

Peter-Simon Dieterich

Research Training Group 1670 Universität Hamburg

11th Nordic String Theory Meeting 2017 09.02.-10.02.2017

arXiv:1702.02400 [math.DG] joint work with V. Cortés and T. Mohaupt

Table of Contents

- Motivation Dimensional reduction of N=2 SUSY
- Special geometry
- Symplectic group actions
- The ASK/PSK-correspondence

We are interested in dimensional reduction of $\mathcal{N}=2$ supersymmetric theories, in particular to the scalar geometries of vector multiplets.

	$rigid\ \mathcal{N} = 2\ SUSY$	$\mathcal{N}=2$ SUGRA
5d vector multiplets 4d vector multiplets 3d vector multiplets	affine special real (ASR) ↓ rigid r-map affine special Kähler (ASK) ↓ rigid c-map hyper Kähler (HK)	projective special real (PSR) ↓local r-map projective special Kähler (PSK) ↓local c-map quaternionic Kähler (QK)

Special Kähler geometry

Motivation

- The HK/QK-correspondence constructs a quaternionic Kähler manifold out of a hyper-Kähler manifold with symmetry of equal dimension. The metric is explicitly given.
- Construction is more general. Gives one-parameter deformation of the supergravity c-map metric (one-loop deformation) preserving completeness.

¹A. Haydys, "HyperKähler and quaternionic Kähler manifolds with S¹-symmetries". In: J. Geom. Phys. 58.3 (2008), pp. 293–306, D. V. Alekseevsky, V. Cortés, and T. Mohaupt, "Conification of Kähler and hyper-Kähler manifolds". In: Commun. Math. Phys. 324.2 (2013), pp. 637-655, D. V. Alekseevsky et al. "Quaternionic Kähler metrics associated with special Kähler manifolds". In: J. Geom. Phys. 92 (2015), pp. 271-287.

- "Naive" approach analogous to HK/QK fails because of problems with signatures.
- Establish ASK/PSK-correspondence, assigning to any ASK manifold a PSK manifold. Gives one-parameter family of metrics, interpreted as perturbative α' -correction.

- (Projective) special real geometry (i.e., d=5) is defined by a cubic homogeneous polynomial $h(x)=a_{ijk}x^ix^jx^k$ defined on a conic domain $U\subset\mathbb{R}^n$.
- Let $M = \mathbb{R}^n + iU$ with z = y + ix.
- Rigid r-map assigns to h ASK geometry generated by holomorphic prepotential

$$F(z) = -h(z).$$

 Sugra r-map assigns to h CASK/PSK geometry generated by holomorphic prepotential

$$\hat{F}(Z^0, Z) = -(Z^0)^2 h(Z/Z^0)$$

on $\hat{M} = \mathbb{C}^* \times M$ with homogeneous coordinates $(Z^0, Z = Z^0 z)$.

Idea

"Local conification" of special Kähler geometry on M generated by prepotential F(z) by assigning to it the homogeneous prepotential $\hat{F} = (Z^0)^2 F(Z/Z^0)$ on the cone $\hat{M} = \mathbb{C}^* \times M$.

Questions

- How does this depend on the coordinates?
- How does this depend on the choice of prepotential (unique up to constant)? E.g., $F \mapsto F + C$, $C \in \mathbb{C}$, then

$$\hat{F}' = (Z^0)^2 F + (Z^0)^2 C.$$

• Can this construction be globalized?

Definition

An affine special Kähler (ASK) manifold (M,J,g,∇) , $\dim_{\mathbb{C}}M=\mathfrak{n}$, is a pseudo Kähler manifold (M,J,g), $\omega=g(\cdot,J\cdot)$, such that

- $oldsymbol{0}$ abla is a flat torsion-free connection,

Definition

An ASK manifold $(\hat{M}, \hat{J}, \hat{g}, \hat{\nabla})$, $\dim_{\mathbb{C}} \hat{M} = n+1$, is called *conical* (CASK) if there is a vector field ξ such that $\hat{g}(\xi, \xi) \neq 0$ and $\hat{\nabla} \xi = \hat{D} \xi = id$.

Definition

If ξ induces a principal \mathbb{C}^* -action, then the quotient $\overline{M}:=\hat{M}/\mathbb{C}^*$ is called *projective special Kähler* (PSK).

Local description [3]

An ASK manifold M can locally be realized as a Kählerian Lagrangian immersion (KLI), i.e., $\phi:U\subset M\to \mathbb{C}^{2n}$ holomorphic immersion such that

- \bullet $\Phi^*\Omega = 0$, where $\Omega = dz^i \wedge dw_i$ symplectic form of \mathbb{C}^{2n} ,

Simply transitive action of $\mathsf{Aff}_{\mathsf{Sp}(\mathbb{R}^{2n})}(\mathbb{C}^{2n})$ on set of KLIs.

Definition

If $(z, w) = \phi : U \subset M \to \mathbb{C}^{2n}$ is a KLI, we call a holomorphic function $F : M \to \mathbb{C}$ a *prepotential* of ϕ if $dF = w_i dz^i$.

Remark

- Locally, if z, w are coordinates, then $z(M) \subset \mathbb{C}^n$, $\phi = dF$.
- ② $\mathsf{Aff}_{\mathsf{Sp}(\mathbb{R}^{2n})}(\mathbb{C}^{2n})$ does **not** act on F!

- Define $G_{SK} := Sp(\mathbb{R}^{2n}) \ltimes Heis_{2n_1}(\mathbb{C})$.
- G_{SK} is a central extension:

$$1 \to \mathbb{C} \to \mathsf{G}_{\mathsf{SK}} \overset{\bar{\rho}}{\to} \mathsf{Aff}_{\mathsf{Sp}(\mathbb{R}^{2n})}(\mathbb{C}^{2n}) \to 1$$

Proposition

We can 'lift' $\bar{\rho}$ to linear representation on $\mathbb{C}^{2n+2}=\mathbb{C}^2\times\mathbb{C}^{2n}$

$$\begin{split} \rho: G_{SK} &\to \mathsf{Sp}(\mathbb{C}^{2n+2}) \\ x &= (X, s, \nu) \mapsto \begin{pmatrix} 1 & 0 & 0 \\ -2s & 1 & \hat{\nu}^t \\ \nu & 0 & X \end{pmatrix} \text{, } \hat{\nu} := X^t \Omega \nu \text{,} \end{split}$$

where $X \in Sp(\mathbb{R}^{2n})$, $s \in \mathbb{C}$, $v \in \mathbb{C}^{2n}$.

Proposition

 G_{SK} acts simply transitively on set $\mathfrak{F}(U)$ of special Kähler pairs (φ,F)

$$\begin{split} x\cdot(\varphi,\mathsf{F}) &:= (\bar{\rho}(x)\circ\varphi,x\cdot\mathsf{F}) \\ x\cdot\mathsf{F} &:= \mathsf{F} - \frac{1}{2}z^jw_j + \frac{1}{2}z'^jw_j' + \frac{1}{2}(\bar{\rho}(x)\circ\varphi)^*\Omega(\cdot,\nu) - s, \end{split}$$

where
$$(z, w) = \phi$$
, $(z', w') = \bar{\rho}(x) \circ \phi$.

• Given a special Kähler pair (ϕ, F) on U, we define

$$\Phi: \hat{U} := \mathbb{C}^* \times U \to \mathbb{C}^{2n+2}$$
$$(Z^0, p) \mapsto Z^0(1, f(p), \varphi(p)),$$

where $f = 2F - z^j w_j$, $(z, w) = \phi$.

• We call Φ the conification of (ϕ, F) , write $con(\phi, F) := \Phi$.

$\mathsf{Theorem}$

- **1** Φ is a Lagrangian immersion iff F is a prepotential of Φ .
- **2** Equivariance: $con(x \cdot (\Phi, F)) = \rho(x) \circ con(\phi, F)$.
- **3** If Φ is Kählerian and $\operatorname{Im}(f + \overline{z}^{j}w_{j}) \neq 0$, then Φ induces CASK structure on $\hat{\mathbb{U}}$ (and, hence, PSK structure on $\overline{\mathbb{U}} = \hat{\mathbb{M}}/\mathbb{C}^{*}$).
- CASK structure depends only on equivalence class in $\mathfrak{F}(U)/G$ where $G = \mathsf{Sp}(\mathbb{R}^{2n}) \ltimes \mathsf{Heis}_{2n+1}(\mathbb{R}) \subset \mathsf{G}_{SK}$.

 The (local) ASK/PSK-correspondence assigns to U given (ϕ, F) non-degenerate (i.e., $con(\phi, F)$ induces CASK structure) a projective special Kähler structure on $\overline{U} \cong U$.

Example

• Let (ϕ, F) be a non-degenerate SK pair on $U, (z, w) := \phi$. Then the ASK metric on U is given by the Kähler potential

$$K = \operatorname{Im}(\bar{z}^{j}w_{j}).$$

• The PSK metric of the ASK/PSK-correspondence is then given by the Kähler potential

$$K' = -\log|\operatorname{Im} f + K|,$$

for
$$f = 2F - z^j w_i$$
.

Theorem

Applying the (local) ASK/PSK correspondence to

$$(\phi_c, F_c) := (dF, F - 2ic), c \in \mathbb{R},$$

with F(z) = -h(z), $c \in \mathbb{R}$, on $M_c \subset M = \mathbb{R}^n + iU$, gives a PSK manifold $(\overline{M}_c, \overline{g}_c)$ for each $c \in \mathbb{R}$.

- If c = 0 we recover the sugra r-map metric.
- If cc' > 0, then $(\overline{M}_c, \overline{g}_c) \cong (\overline{M}_{c'}, \overline{g}_{c'})$.
- If the PSR manifold defined by h is complete, then $(\overline{M}_c, \overline{g}_c)$ is complete for c < 0.
- Correction to metric can be interpreted as an α' correction

- We show that every ASK manifold admits a flat principal G_{SK} -bundle $\pi: P \to M$, connection θ , with fibers consisting of germs of special Kähler pairs.
- If $u := (\phi, F)$ is non-degenerate (i.e. $con(\phi, F)$ induces CASK structure), define $dom(u) \subset M$ to be the set on which analytic continuation of u is non-degenerate.
- Analytic continuation corresponds to parallel transport of u in P.

Theorem (ASK/PSK-correspondence)

If $\mathsf{Hol}(\theta) \subset \mathsf{G}$ then $\hat{\mathsf{M}}_{\mathfrak{u}} = \mathbb{C}^* \times \mathsf{dom}(\mathfrak{u})$ has a CASK-structure (and, hence, a PSK structure on $\overline{\mathsf{M}}_{\mathfrak{u}} = \hat{\mathsf{M}}_{\mathfrak{u}}/\mathbb{C}^*$).

Global ASK/PSK-correspondence

Motivation

Thank you for your attention!

References I

- D. V. Alekseevsky, V. Cortés, and T. Mohaupt. "Conification of Kähler and hyper-Kähler manifolds". In: *Commun. Math. Phys.* 324.2 (2013), pp. 637–655.
- D. V. Alekseevsky et al. "Quaternionic Kähler metrics associated with special Kähler manifolds". In: *J. Geom. Phys.* 92 (2015), pp. 271–287.
- D. Alekseevsky, V. Cortés, and C. Devchand. "Special complex manifolds". In: *J. Geom. Phys.* 42.1 (2002), pp. 85–105.
- S. Ferrara and S. Sabharwal. "Quaternionic manifolds for type II superstring vacua of Calabi-Yau spaces". In: *Nucl. Phys. B* 332.2 (1990), pp. 317–332.

References II

B. de Wit and A. Van Proeyen. "Special geometry, cubic polynomials and homogeneous quaternionic spaces". In: *Comm. Math. Phys.* 149.2 (1992), pp. 307–333.